Colloidal semiconductor/magnetic heterostructures based on iron-oxide-functionalized brookite TiO2 nanorods.

نویسندگان

  • Raffaella Buonsanti
  • Etienne Snoeck
  • Cinzia Giannini
  • Fabia Gozzo
  • Mar Garcia-Hernandez
  • Miguel Angel Garcia
  • Roberto Cingolani
  • Pantaleo Davide Cozzoli
چکیده

A flexible colloidal seeded-growth strategy has been developed to synthesize all-oxide semiconductor/magnetic hybrid nanocrystals (HNCs) in various topological arrangements, for which the dimensions of the constituent material domains can be controlled independently over a wide range. Our approach relies on driving preferential heterogeneous nucleation and growth of spinel cubic iron oxide (IO) domains onto brookite TiO2 nanorods (b-TiO2) with tailored geometric parameters, by means of time-programmed delivery of organometallic precursors into a suitable TiO2-loaded surfactant environment. The b-TiO2 seeds exhibit size-dependent accessibility towards IO under diffusion-controlled growth regime, which allows attainment of HNCs individually made of a single b-TiO2 section functionalized with either one or multiple nearly spherical IO domains. In spite of the dissimilarity of the respective crystal-phases, the two materials share large interfacial junctions without significant lattice strain being induced across the heterostructures. The synthetic achievements have been supported by a systematic morphological, compositional and structural characterization of the as-prepared HNCs, offering a mechanistic insight into the specific role of the seeds in the control of heterostructure formation in liquid media. In addition, the impact of the formed b-TiO2/IO heterojunctions on the magnetic properties of IO has also been assessed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Targeted deposition of ZnO2 on brookite TiO2 nanorods towards high photocatalytic activity.

A novel heterostructure was first synthesized by directly depositing photocatalytic inert ZnO2 onto facet {201} of brookite nanorods. The heterostructure thus obtained was found to show a superior photocatalytic activity under UV-light irradiation. The exceptional photocatalytic performance was due to the band-structure match between ZnO2 and brookite as well as synergic charge accumulation by ...

متن کامل

Brookite TiO2 nanoflowers.

Pure brookite TiO(2) nanoflowers consisting of single crystalline nanorods were synthesized for the first time using a facile one-step hydrothermal process.

متن کامل

Photodegradation of nalidixic acid assisted by TiO(2) nanorods/Ag nanoparticles based catalyst.

Two different nanosized TiO2-based catalysts supported onto glass with tailored photocatalytic properties upon irradiation by UV light were successfully employed for the degradation of nalidixid acid, a widely diffused antibacterial agent of environmental relevance known to be non-biodegradable. Anatase rod-like TiO2 nanocrystals (TiO2NRs) and a semiconductor oxide-noble metal nanocomposite TiO...

متن کامل

Enhanced photocatalytic performance of TiO2-ZnO hybrid nanostructures

We studied the photocatalytic properties of rational designed TiO2-ZnO hybrid nanostructures, which were fabricated by the site-specific deposition of amorphous TiO2 on the tips of ZnO nanorods. Compared with the pure components of ZnO nanorods and amorphous TiO2 nanoparticles, these TiO2-ZnO hybrid nanostructures demonstrated a higher catalytic activity. The strong green emission quenching obs...

متن کامل

Photocatalytic TiO2 Nanorod Spheres and Arrays Compatible with Flexible Applications

In the present study, titanium dioxide nanostructures were synthesized through microwave irradiation. In a typical microwave synthesis, nanorod spheres in the powder form were simultaneously produced with nanorod arrays grown on polyethylene terephthalate (PET) substrates. The syntheses were performed in water or ethanol with limited temperature at 80 ◦C and 200 ◦C. A simple and low-cost approa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 11 19  شماره 

صفحات  -

تاریخ انتشار 2009